大部分的光耦都是低速光耦
最著名的当然是TLP521-1;
PC817、814等也是经常使用的光耦;
高速光耦最著名也最便宜的是6N137
在通讯电路设计中,光耦是经常见到的;
TLP521-1可以用到9600~19200;
限流电阻是1K;上拉电阻是1K;
6N137可以到10M;但是6N137需要按照datasheet来接它的外部电路才能达到10M的速度;
6N137的测试电路
6N137的使用注意点:
1、高速光耦的驱动LED的电流要求比较大,LED的压降也比较大,在5V情况下,限流电阻我选择的是680欧姆;
2、上拉电阻需要调整到1K或者更小才能达到10M的速度;(印象记忆中)
还有一种特殊的光耦,内部有2个发光管
常见之高速光藕型号
常见之高速光藕型号[zt]
经查大量资料后,总结出目前市场上常见之高速光藕型号供大家选择:
100K bit/S:
6N138、6N139、PS8703
1M bit/S:
6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)
10M bit/S:
6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)
另外,台湾COSMO公司的KP7010在RL选值为300欧左右时,我根据其数据手册所载数值计算,速率可达100Kbit/S,且为6脚封装,比同级的6N138、6N139小巧,价格也较低。
CTR的定义
光耦合器的增益被称为晶体管输出器件的电流传输比 (CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压
MICROCOUPLER为高温应用提升功耗性能
MICROCOUPLER为高温应用提升功耗性能
|
飞兆半导体 Muralitharan Samy、Krishnan Ramdass、Robert Krause
|
光耦合器是具有绝缘安全性及在输入和输出之间实现电气信号隔离功能的器件,其绝缘和噪声抑制特性来自于采用的机械结构和材料。
光耦合器由一个光源和一个由透明光导管围绕的感光检测器组成,并藏于环氧塑料封装内。光源是红外LED,用来将电流转换为光。感光检测器是一个硅光电二极管,作用是将光转换回电流,然后通过集成的晶体管被放大。光耦合器的增益被称为晶体管输出器件的电流传输比 (CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。
额定工作温度高达100℃的设计的出现,使业界对热稳定性和低驱动电流的需求飚升。封装技术的进步也在推动光耦合器封装的发展。从DIP (双列直插式) 转至SOP (小型封装) 及MFP (微型扁平封装) 减小了占位面积,提升了光耦合器的热性能。体积的减小也有助于在工作温度范围内增加热存储和稳定性。
飞兆半导体的Microcoupler (FODB100)是无铅表贴光耦合器,提供高达125℃的封装工作温度。随着工作温度的提升,电气性能和稳定性成为重要的课题。面对这些挑战,新的LED材料被选用以便在规定的工作温度范围内提高CTR稳定性。AlGaAs (铝砷化稼) 红外发光二极管在一定温度范围内较GaAs (砷化稼) 红外发光二极管具有更好的稳定性。AlGaAs LED可于低电流 (最低达500 A) 下工作。更小型的封装和更佳的Ired材料使Microcoupler比传统的光耦合器封装在较高的工作温度范围内具有更加稳定的电气性能。 |
图1功耗的计算图1所示为MFP封装与Microcoupler在工作温度范围内CTR性能的比较。Microcoupler在100℃时的标准化CTR下降率约为20%,而MFP封装则为50%。较小的热体积和较高效率的AlGaAs Ired材料是Microcoupler获得较佳CTR稳定性的原因。由于该产品在一定温度范围内展现较高的稳定性,因此更易于在高温范围内进行设计。
根据图1的数据,当温度从0℃上升到100℃时,FODB100的CTR从+8%下降到 20%。最小CTR(I_{F}=1mA)为100%。当工作10年后,CTR一般会下降20%。现在,我们可以算出上述条件下最小的CTR:
最小 (CTR在100℃)=100%x0.80x0.80=64%
R_{1}=\frac{(V_{CC}-V_{F})}{I_{F}} →(1)
I_{F}=\frac{I_{CE}}{CTR} →(2)
首先确定所需的I_{CE},然后可以确定I_{F}。从以上计算可知CTR为64%。假设所需I_{CE}为1mA。
从公式 2可得:I_{F}=\frac{1mA}{0.64}=1.56mA
从表2可知在100℃当V_{F}= 1.1 V时,V_{CC}= 5V;
功耗=(V_{F} I_{F})+(V_{CE} I_{CE})
(导通状态) =(1.1V 1.56mA)+(0.4V 1mA)=2.117mA
根据图1的数据,当温度从0℃上升到100℃时,MFP封装的CTR从+9%下降到 -50%。最小CTR (I_{F}=5mA)为100%。假设LED电流为(I_{F}=1mA),CTR增益为100%,那么I_{CE}等于1mA。当工作10年后,CTR一般会下降20%。现在,我们可以算出上述条件下最小的CTR:
最小 (CTR在100℃) =100%x0.50x0.80=40%
首先确定所需的I_{CE},然后可以确定I_{F}。从以上计算可知CTR为40%。假设所需I_{CE}为1mA。
从公式 2可得:I_{F}=\frac{1mA}{0.4}=2.5mA
从表4可知在100℃当V_{F}= 1.15 V时,V_{CC}= 5V;
功耗=(V_{F} I_{F})+(V_{CE} I_{CE})
(导通状态) =(1.15V 2.5mA)+(0.4V 1mA)=3.28mA
热阻
表5列出了两种不同封装在同样电气特性下的热性能。封装密度和封装材料对于封装从结点到周围的散热能力有很大影响。由于Microcoupler 的封装密度较小,因此具有比MFP封装更多的从裸片结点散热的路径。
计算光耦合器裸片温度相对于周围温度的上升:
T_{J}=P_{DEVICE\phantom{8}POWER} _{JA}+T_{A}
Microcoupler
Tj (发射器) = 100.44℃
Tj (检测器) = 100.05℃
MFP
Tj (发射器) = 103.96℃
Tj (检测器) = 100.06℃
结论
在100℃的温度环境维持相同增益的前提下,Microcoupler的功耗比标准MFP封装低约35%。Microcoupler封装的高效率LED和较佳的热性能是在高温应用下获得低功耗的主因。这些优点为设计人员的高温应用提供了理想的低功耗解决方案。
可控硅型光耦
还有一种光耦是可控硅型光耦。
例如:moc3063、IL420;
它们的主要指标是负载能力;
例如:moc3063的负载能力是100mA;IL420是300mA;
上传IL420的pdf文档
上传IL420的pdf文档
FEATURES
? High Input Sensitivity IFT=2 mA
? Blocking Voltage, 600 V
? 300 mA On-State Current
? High Static dv/dt 10,000 V/ms
? Inverse Parallel SCRs Provide Commutatingdv/dt >2K V/ms
? Very Low Leakage <10mA
? Isolation Test Voltage from Double
Molded
Package 5300 VAC
RMS
? Small 6-Pin DIP Package
? Underwriters Lab File #E52744
? VDE 0884 Available with Option 1
Maximum Ratings
Emitter
Reverse Voltage ................................................ 6 V
Forward Current ........................................... 60 mA
Surge Current..................................................2.5 A
Power Dissipation.......................................100 mW
Derate from 25°C ................................1.33 mW/°C
Thermal Resistance..................................750°C/W
Detector
Peak Off-State Voltage ...................................600 V
Peak Reverse Voltage ....................................600 V
RMS On-State Current.................................300 mA
Single Cycle Surge............................................ 3 A
Total Power Dissipation ..............................500 mW
Derate from 25°C ..................................6.6 mW/°C
Thermal Resistance...................................150°C/W
Package
Storage Temperature................... –55°C to +150°C
Operating Temperature ............... –55°C to +100°C
Lead Soldering Temperature.............. 260°C/5 sec.
Isolation Test Voltage.........................5300 VACRMS
DESCRIPTION
The IL420 consists of a GaAs IRLED optically coupled to a photosensitive
non-zero crossing TRIAC network. The TRIAC consists of two
inverse parallel connected monolithic SCRs. These three semiconductors
are assembled in a six pin 0.3 inch dual in-line package, using high
insulation double molded, over/under leadframe construction.
High input sensitivity is achieved by using an emitter follower phototransistor
and a cascaded SCR predriver resulting in an LED trigger
current of less than 2 mA (DC).
The IL420 uses two discrete SCRs resulting in a commutating dV/dt of
greater than 10KV/ms. The use of a proprietary
dv/dt clamp
results in a
static dV/dt of greater than 10KV/ms. This clamp circuit has a MOSFET
that is enhanced when high dV/dt spikes occur between MT1 and MT2
of the TRIAC. When conducting, the FET clamps the base of the phototransistor,
disabling the first stage SCR predriver.
The 600 V blocking voltage permits control of off-line voltages up to 240
VAC, with a safety factor of more than two, and is sufficient for as much
as 380 VAC.
The IL420 isolates low-voltage logic from 120, 240, and 380 VAC lines to
control resistive, inductive, or capacitive loads including motors, solenoids,
high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office equipment,
and consumer appliances.
可控硅型光耦
还有一种光耦是可控硅型光耦。
例如:moc3063、IL420;
它们的主要指标是负载能力;
例如:moc3063的负载能力是100mA;IL420是300mA;
上传IL420的pdf文档
上传IL420的pdf文档
FEATURES
? High Input Sensitivity IFT=2 mA
? Blocking Voltage, 600 V
? 300 mA On-State Current
? High Static dv/dt 10,000 V/ms
? Inverse Parallel SCRs Provide Commutatingdv/dt >2K V/ms
? Very Low Leakage <10mA
? Isolation Test Voltage from Double
Molded
Package 5300 VAC
RMS
? Small 6-Pin DIP Package
? Underwriters Lab File #E52744
? VDE 0884 Available with Option 1
Maximum Ratings
Emitter
Reverse Voltage ................................................ 6 V
Forward Current ........................................... 60 mA
Surge Current..................................................2.5 A
Power Dissipation.......................................100 mW
Derate from 25°C ................................1.33 mW/°C
Thermal Resistance..................................750°C/W
Detector
Peak Off-State Voltage ...................................600 V
Peak Reverse Voltage ....................................600 V
RMS On-State Current.................................300 mA
Single Cycle Surge............................................ 3 A
Total Power Dissipation ..............................500 mW
Derate from 25°C ..................................6.6 mW/°C
Thermal Resistance...................................150°C/W
Package
Storage Temperature................... –55°C to +150°C
Operating Temperature ............... –55°C to +100°C
Lead Soldering Temperature.............. 260°C/5 sec.
Isolation Test Voltage.........................5300 VACRMS
DESCRIPTION
The IL420 consists of a GaAs IRLED optically coupled to a photosensitive
non-zero crossing TRIAC network. The TRIAC consists of two
inverse parallel connected monolithic SCRs. These three semiconductors
are assembled in a six pin 0.3 inch dual in-line package, using high
insulation double molded, over/under leadframe construction.
High input sensitivity is achieved by using an emitter follower phototransistor
and a cascaded SCR predriver resulting in an LED trigger
current of less than 2 mA (DC).
The IL420 uses two discrete SCRs resulting in a commutating dV/dt of
greater than 10KV/ms. The use of a proprietary
dv/dt clamp
results in a
static dV/dt of greater than 10KV/ms. This clamp circuit has a MOSFET
that is enhanced when high dV/dt spikes occur between MT1 and MT2
of the TRIAC. When conducting, the FET clamps the base of the phototransistor,
disabling the first stage SCR predriver.
The 600 V blocking voltage permits control of off-line voltages up to 240
VAC, with a safety factor of more than two, and is sufficient for as much
as 380 VAC.
The IL420 isolates low-voltage logic from 120, 240, and 380 VAC lines to
control resistive, inductive, or capacitive loads including motors, solenoids,
high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office equipment,
and consumer appliances.
光耦的部分型号
产品名称 |
型号规格 |
性能说明 |
光电耦合 |
|
|
|
4N25 |
晶体管输出 |
|
4N25MC |
晶体管输出 |
|
4N26 |
晶体管输出 |
|
4N27 |
晶体管输出 |
|
4N28 |
晶体管输出 |
|
4N29 |
达林顿输出 |
|
4N30 |
达林顿输出 |
|
4N31 |
达林顿输出 |
|
4N32 |
达林顿输出 |
|
4N33 |
达林顿输出 |
|
4N33MC |
达林顿输出 |
|
4N35 |
达林顿输出 |
|
4N36 |
晶体管输出 |
|
4N37 |
晶体管输出 |
|
4N38 |
晶体管输出 |
|
4N39 |
可控硅输出 |
|
6N135 |
高速光耦晶体管输出 |
|
6N136 |
高速光耦晶体管输出 |
|
6N137 |
高速光耦晶体管输出 |
|
6N138 |
达林顿输出 |
|
6N139 |
达林顿输出 |
|
MOC3020 |
可控硅驱动输出 |
|
MOC3021 |
可控硅驱动输出 |
|
MOC3023 |
可控硅驱动输出 |
|
MOC3030 |
可控硅驱动输出 |
|
MOC3040 |
过零触发可控硅输出 |
|
MOC3041 |
过零触发可控硅输出 |
|
MOC3061 |
过零触发可控硅输出 |
|
MOC3081 |
过零触发可控硅输出 |
|
TLP521-1 |
单光耦 |
|
TLP521-2 |
双光耦 |
|
TLP521-4 |
四光耦 |
|
TLP621 |
四光耦 |
|
TIL113 |
达林顿输出 |
|
TIL117 |
TTL逻辑输出 |
|
PC814 |
单光耦 |
|
PC817 |
单光耦 |
|
H11A2 |
晶体管输出 |
|
H11D1 |
高压晶体管输出 |
|
H11G2 |
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。